
Aspect-Based Sentiment Analysis Report
Authors: Dhananjay Gupta, Karan Kadakia

ABSTRACT

Sentiment analysis is defined as determining the neutrality, positivity or negativity of a given
text based on given aspect term. We are to analyze a dataset, containing both, an aspect
term information and the text. Our solution involves understanding various approaches to
tackle the task, analyzes the text/sentences and finally builds a classifier capable of
determining the sentiment of the provided text/sentence. We examine various text cleaning
techniques, machine learning models and discuss their respective merits.

INTRODUCTION:

While sentiment analysis provides fantastic insights, and has a wide range of real-world
applications, the overall sentiment of a piece of text won’t always pinpoint the root cause of
an author’s opinion.

Certain types of documents, such as customer feedback or reviews, may contain fine-
grained sentiment about different aspects about a product or service that are mentioned in
text. For instance, a review about a hotel may contain opinionated sentences about its staff,
beds and location. This information can be highly valuable for understanding customers’
opinion about a particular service or product.

Aspect-Based Sentiment Analysis makes it easier to identify and determine the sentiment
towards specific aspects in text. This project aims at analyzing the corpus, understanding
various approaches to tackle the task and finally building a classifier capable of determining
the sentiment of this corpus. We examine various text cleaning techniques, machine
learning models and discuss their respective merits.

Data Details:

Given training data has following columns:
Column A: review sentence id
Column B: review sentence
Column C: aspect term in the sentence
Column D: aspect term location
Column E: sentiment label

Task: Given an aspect term (also called opinion target) in a sentence, predict the sentiment
label for the aspect term in the sentence.

TECHNIQUES:

Data Cleaning:

The ‘text’ and ‘aspect term’ columns contain a lot of symbols which are detrimental to the
task of sentiment analysis. Removal of < > (em tags), _ (underscore), “ (quotes) and non-
ascii codes (emoji) was essential. Additionally, we explored the conversion of emoticons,
which strongly represent an emotion, into specific words to expose the underlying

sentiment, but found that it simply adds noise to the corpus. Perhaps this was due to
various sarcastic emoticons being used by the subjects.

Features:

We initially tried several features like complete n-gram vectorization of complete text data
but came down to following features, as they played most important role in determining the
sentiment:

▪

▪

▪

▪

▪

Distance between aspect term and nearest feature
Class of adjective
Positive words count
Negative words count
n-gram vectorization of aspect +5 words left & right

Including these features over just taking text as feature not only made our model smarter
but also increased Accuracy by a 3-4 %

Bag of Words and n-gram:

We applied the bag of words (count vectorization) technique (later shifted to tfidf vectorizer),
which assigns a fixed integer id to each word, which is the count of the number of instances of
each word. Thus, the bag of word representation implies that the number of features is equal to
the number of words in the extracted +5 words left and right of aspect term.

We can further use N-gram features, which builds upon the 1-gram bag of words to build
larger bags. For this project, we attempt to use Bi-gram and Tri-gram features, and found
that it significantly augments the performance of machine Learning models. We tried
possible combinations of n-gram range from Uni, Bi and Tri gram and found that
combination of all three give the best accuracy and score. Therefore, we use Uni + Bi + Tri
gram features. Such an approach improves our performance by 2- 2.5 % on average.

Term Frequency Inverse Document Vectorizer on n-gram data:

We shifted from count vectorizer to tfidf vectorizer because count vectorizer just gives us
frequency of each term in the document ignoring how important that word is for the
sentiment. Tfidf perfectly serves this purpose. Incorporating IDF (Inverse Document
Frequency) with TF transformation permits us to normalize the count of N-grams in a
uniform manner. It also assists in removal of very frequent words which simply add
computational complexity without improving the score. We performed an experiment using
just term frequencies and found that inverse document frequency scaling was very
important, as our ML models failed to generalize well with just TF. Using TF-IDF, our score
improves by approximately 2-3 %.

Chi2 method:

We used chi2 method for choosing best ‘k’ feature for classification. This proved to be great
for the provided data and max increase in accuracy was recoded as 5%, which had great
benefit for us. In this, we tried for different values of k (4000, 6000, 8000, 10000, 12000,
15000) and got the best results on 12000.

Major Python Packages/Libraries used:
pandas
numpy
scipy
sklearn.metrics.confusion_matrix
sklearn.feature_extraction.text.TfidfVectorizer

sklearn.model_selection.StratifiedKFol
d sklearn.tree.DecisionTreeClassifier
sklearn.naive_bayes.MultinomialNB

sklearn.feature_selection.chi2, SelectKBest
sklearn.svm.LinearSVC
sklearn.neighbors.KNeighborsClassifier
nltk.tokenize.word_tokenize
nltk.tokenize.RegexpTokenizer
nltk.stem.porter import PorterStemmer
nltk.stem import WordNetLemmatizer
nltk.corpus import stopwords

Classification Methods Experimented:

The following machine learning models were experimented with, and for each of these,
various hyperparameters for respective models were tuned for performance improvement:

1. K-nearest neighbors (Params tuned: n_neighbors)
2. Decision Trees (Params tuned: max_depth)
3. Linear SVM (Params tuned: dual)
4. Polynomial SVM (Params tuned: degree, gamma, C)
5. SVM with radial basis function (Params tuned: C, gamma)
6. Naïve Bayes

EVALUATION

The following data reflects the accuracy, precision, recall & F-score (with respect to
positive, negative & neutral classes) of various models experimented with on both datasets.
These values have been calculated on basis of 10-fold cross validation:

Data 1

 Classifier Accuracy Precision Recall F1-Score

 Decision Tree 63.5 63.7 68.4 65.97
 70.5 75.9 73.1

 - 27.5

 K Nearest 59 66.8 69.7 68.2
 Neighbors 55.2 62.3 58.5
 46.2 29.8 36.2

 Linear SVM 76.1 89.2 95.1 92.1
 - -

 84.8 68.6 75.8

 Naïve Bayes 58.4 72.6 51.5 60.3
 55.6 91.7 69.2

 - 0

Data 2

 Classifier Accuracy Precision Recall F1-Score

 Decision Tree 65 55.6 34.9 42.9
 76.6 82.7 79.5
 40.5 42.9 41.7

 K Nearest 60.2 64.6 91.1 75.6
 Neighbors 39.1 14.1 20.7
 31.1 13.4 18.7

 Linear SVM 70.4 86.5 95.8 90.9
 - -

 65.4 34.2 44.9

 Naïve Bayes 60.965 - 3.96

 60.7 100 75.5

 - 0

CONCLUSION

After trying several classifiers for training and prediction of sentiment classes based
on aspect-term using 10-fold cross validation, it was observed that Linear Support Vector
Machine yielded best results out of all. Although polynomial SVM demanded much more
time for fitting the training data, it did not show significant improvement in performance
over linear SVM.

Thus, we use Linear SVM as our chosen classifier for predicting classes based on the
features mentioned above.

We plan to further experiment with various ensemble methods to check for score
improvement.

REFERENCES

1. Minqing Hu and Bing Liu. "Mining and Summarizing Customer Reviews." ;
Proceedings of the ACM SIGKDD International Conference on Knowledge ; Discovery
and Data Mining (KDD-2004), Aug 22-25, 2004, Seattle, ; Washington, USA

2. Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing and

Comparing Opinions on the Web." Proceedings of the 14th ; International World
Wide Web conference (WWW-2005), May 10-14, ; 2005, Chiba, Japan

3. https://machinelearningmastery.com/clean-text-machine-learning-python/
4. https://dzone.com/articles/nlp-tutorial-using-python-nltk-simple-examples
5. https://www.sciencedirect.com/science/article/pii/S1877050916320683
6. http://pages.cs.wisc.edu/~jerryzhu/cs769/text_preprocessing.pdf
7. https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
8. http://text-processing.com/demo/sentiment/
9. scikit-learn.org/stable/
10. http://nltk.org/

http://pages.cs.wisc.edu/~jerryzhu/cs769/text_preprocessing.pdf
http://nltk.org/

