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ABSTRACT 

 

Sentiment analysis is defined as determining the neutrality, positivity or negativity of a given 
text based on given aspect term. We are to analyze a dataset, containing both, an aspect 
term information and the text. Our solution involves understanding various approaches to 
tackle the task, analyzes the text/sentences and finally builds a classifier capable of 
determining the sentiment of the provided text/sentence. We examine various text cleaning 
techniques, machine learning models and discuss their respective merits. 
 

INTRODUCTION: 

 

While sentiment analysis provides fantastic insights, and has a wide range of real-world 
applications, the overall sentiment of a piece of text won’t always pinpoint the root cause of 
an author’s opinion. 
 
Certain types of documents, such as customer feedback or reviews, may contain fine-
grained sentiment about different aspects about a product or service that are mentioned in 
text. For instance, a review about a hotel may contain opinionated sentences about its staff, 
beds and location. This information can be highly valuable for understanding customers’ 
opinion about a particular service or product. 
 
Aspect-Based Sentiment Analysis makes it easier to identify and determine the sentiment 
towards specific aspects in text. This project aims at analyzing the corpus, understanding 
various approaches to tackle the task and finally building a classifier capable of determining 
the sentiment of this corpus. We examine various text cleaning techniques, machine 
learning models and discuss their respective merits. 
 

Data Details: 
 

Given training data has following columns: 
Column A: review sentence id  
Column B: review sentence 
Column C: aspect term in the sentence 
Column D: aspect term location 
Column E: sentiment label 

 

Task: Given an aspect term (also called opinion target) in a sentence, predict the sentiment 
label for the aspect term in the sentence. 
 

 

TECHNIQUES: 
 

Data Cleaning: 
 
The ‘text’ and ‘aspect term’ columns contain a lot of symbols which are detrimental to the 
task of sentiment analysis. Removal of < > (em tags), _ (underscore), “ (quotes) and non-
ascii codes (emoji) was essential. Additionally, we explored the conversion of emoticons, 
which strongly represent an emotion, into specific words to expose the underlying 



sentiment, but found that it simply adds noise to the corpus. Perhaps this was due to 
various sarcastic emoticons being used by the subjects. 



Features: 

 

We initially tried several features like complete n-gram vectorization of complete text data 
but came down to following features, as they played most important role in determining the 
sentiment: 
 

▪ 
 

▪ 
 

▪ 
 

▪ 
 

▪ 

 

Distance between aspect term and nearest feature 
Class of adjective 
Positive words count 
Negative words count 
n-gram vectorization of aspect +5 words left & right 

 

Including these features over just taking text as feature not only made our model smarter 
but also increased Accuracy by a 3-4 % 
 

Bag of Words and n-gram: 

 

We applied the bag of words (count vectorization) technique (later shifted to tfidf vectorizer), 
which assigns a fixed integer id to each word, which is the count of the number of instances of 
each word. Thus, the bag of word representation implies that the number of features is equal to 
the number of words in the extracted +5 words left and right of aspect term. 
 

We can further use N-gram features, which builds upon the 1-gram bag of words to build 
larger bags. For this project, we attempt to use Bi-gram and Tri-gram features, and found 
that it significantly augments the performance of machine Learning models. We tried 
possible combinations of n-gram range from Uni, Bi and Tri gram and found that 
combination of all three give the best accuracy and score. Therefore, we use Uni + Bi + Tri 
gram features. Such an approach improves our performance by 2- 2.5 % on average. 
 

Term Frequency Inverse Document Vectorizer on n-gram data: 

 

We shifted from count vectorizer to tfidf vectorizer because count vectorizer just gives us 
frequency of each term in the document ignoring how important that word is for the 
sentiment. Tfidf perfectly serves this purpose. Incorporating IDF (Inverse Document 
Frequency) with TF transformation permits us to normalize the count of N-grams in a 
uniform manner. It also assists in removal of very frequent words which simply add 
computational complexity without improving the score. We performed an experiment using 
just term frequencies and found that inverse document frequency scaling was very 
important, as our ML models failed to generalize well with just TF. Using TF-IDF, our score 
improves by approximately 2-3 %. 

 

Chi2 method: 

 

We used chi2 method for choosing best ‘k’ feature for classification. This proved to be great 
for the provided data and max increase in accuracy was recoded as 5%, which had great 
benefit for us. In this, we tried for different values of k (4000, 6000, 8000, 10000, 12000, 
15000) and got the best results on 12000. 



 

Major Python Packages/Libraries used: 
pandas 
numpy 
scipy 
sklearn.metrics.confusion_matrix  
sklearn.feature_extraction.text.TfidfVectorizer 
 
sklearn.model_selection.StratifiedKFol
d sklearn.tree.DecisionTreeClassifier 
sklearn.naive_bayes.MultinomialNB 

 

 

sklearn.feature_selection.chi2, SelectKBest 
sklearn.svm.LinearSVC 
sklearn.neighbors.KNeighborsClassifier 
nltk.tokenize.word_tokenize 
nltk.tokenize.RegexpTokenizer 
nltk.stem.porter import PorterStemmer 
nltk.stem import WordNetLemmatizer 
nltk.corpus import stopwords 



Classification Methods Experimented: 

 

The following machine learning models were experimented with, and for each of these, 
various hyperparameters for respective models were tuned for performance improvement: 
 

1. K-nearest neighbors (Params tuned: n_neighbors) 
2. Decision Trees (Params tuned: max_depth) 
3. Linear SVM (Params tuned: dual) 
4. Polynomial SVM (Params tuned: degree, gamma, C) 
5. SVM with radial basis function (Params tuned: C, gamma) 
6. Naïve Bayes  

 

EVALUATION 

 

The following data reflects the accuracy, precision, recall & F-score (with respect to 
positive, negative & neutral classes) of various models experimented with on both datasets. 
These values have been calculated on basis of 10-fold cross validation:  
 

Data 1 

 Classifier Accuracy Precision Recall F1-Score 

 Decision Tree 63.5 63.7 68.4 65.97 
   70.5 75.9 73.1 

   - 27.5  

 K Nearest 59 66.8 69.7 68.2 
 Neighbors  55.2 62.3 58.5 
   46.2 29.8 36.2 

 Linear SVM 76.1 89.2 95.1 92.1 
   - -  

   84.8 68.6 75.8 

 Naïve Bayes 58.4 72.6 51.5 60.3 
   55.6 91.7 69.2 

   - 0  
 
 

Data 2 

 Classifier Accuracy Precision Recall F1-Score 

 Decision Tree 65 55.6 34.9 42.9 
   76.6 82.7 79.5 
   40.5 42.9 41.7 

 K Nearest 60.2 64.6 91.1 75.6 
 Neighbors  39.1 14.1 20.7 
   31.1 13.4 18.7 

 Linear SVM 70.4 86.5 95.8 90.9 
   - -  

   65.4 34.2 44.9 

 Naïve Bayes 60.965 - 3.96  

   60.7 100 75.5 

   - 0  



CONCLUSION 

 

After trying several classifiers for training and prediction of sentiment classes based 
on aspect-term using 10-fold cross validation, it was observed that Linear Support Vector 
Machine yielded best results out of all. Although polynomial SVM demanded much more 
time for fitting the training data, it did not show significant improvement in performance 
over linear SVM. 
 

Thus, we use Linear SVM as our chosen classifier for predicting classes based on the 
features mentioned above. 
 

We plan to further experiment with various ensemble methods to check for score 
improvement. 
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